久久精品日韩无码|61伊人久久绿帽|最新国产浮力网站|亚州aV无码国产|明星一二三区av|超碰人人在线成人|澳门无码福利av

舞臺美術專業(yè)?

時間:2025-05-13 20:36 人氣:0 編輯:招聘街

一、舞臺美術專業(yè)?

舞臺美術設計是舞臺演出的一個重要組成部分,分為布景、燈光、化妝、服裝、效果、道具等的綜合設計,簡稱舞美設計。 學舞臺美術設計必須會舞臺藝術設計專業(yè),它屬于藝術傳媒設計大類的專業(yè)分支,學生需要修學3年即可獲得相應學位與畢業(yè)證。 舞臺藝術設計專業(yè)需要學的內容:舞臺設計、舞臺燈光基礎、舞臺音響基礎、布景技術、計算機輔助設計、繪畫、匯景、攝影攝像基礎、舞臺與影視道具制作等。 舞臺美術設計在舞臺上呈現的功能:塑造人物形象、擴展動作空間、表現動作環(huán)境、創(chuàng)造情調氣氛、揭示戲劇思想。

二、職高美術專業(yè)?

你好,職高服裝設計專業(yè)我還沒聽說過,但是如果通過職高的美術專業(yè)考到二本,就要看今年有招收職高學生的院校有那些專業(yè)可以報了,例如福建省今年有四個院校有招收高職學生,其中有五個專業(yè)可選,其中就有服裝設計學,藝術設計學,視覺傳達,動畫和產品設計。

三、mahout面試題?

之前看了Mahout官方示例 20news 的調用實現;于是想根據示例的流程實現其他例子。網上看到了一個關于天氣適不適合打羽毛球的例子。

訓練數據:

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

檢測數據:

sunny,hot,high,weak

結果:

Yes=》 0.007039

No=》 0.027418

于是使用Java代碼調用Mahout的工具類實現分類。

基本思想:

1. 構造分類數據。

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數據轉換成vector數據。

4. 分類器對vector數據進行分類。

接下來貼下我的代碼實現=》

1. 構造分類數據:

在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數據傳到hdfs上面。

數據文件格式,如D1文件內容: Sunny Hot High Weak

2. 使用Mahout工具類進行訓練,得到訓練模型。

3。將要檢測數據轉換成vector數據。

4. 分類器對vector數據進行分類。

這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》

package myTesting.bayes;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.util.ToolRunner;

import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;

import org.apache.mahout.text.SequenceFilesFromDirectory;

import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;

public class PlayTennis1 {

private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";

/*

* 測試代碼

*/

public static void main(String[] args) {

//將訓練數據轉換成 vector數據

makeTrainVector();

//產生訓練模型

makeModel(false);

//測試檢測數據

BayesCheckData.printResult();

}

public static void makeCheckVector(){

//將測試數據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"testinput";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失敗!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失敗!");

System.out.println(2);

}

}

public static void makeTrainVector(){

//將測試數據轉換成序列化文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"input";

String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();

String[] params = new String[]{"-i",input,"-o",output,"-ow"};

ToolRunner.run(sffd, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("文件序列化失??!");

System.exit(1);

}

//將序列化文件轉換成向量文件

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";

String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";

Path in = new Path(input);

Path out = new Path(output);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();

String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};

ToolRunner.run(svfsf, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("序列化文件轉換成向量失??!");

System.out.println(2);

}

}

public static void makeModel(boolean completelyNB){

try {

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";

String model = WORK_DIR+Path.SEPARATOR+"model";

String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";

Path in = new Path(input);

Path out = new Path(model);

Path label = new Path(labelindex);

FileSystem fs = FileSystem.get(conf);

if(fs.exists(in)){

if(fs.exists(out)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(out, true);

}

if(fs.exists(label)){

//boolean參數是,是否遞歸刪除的意思

fs.delete(label, true);

}

TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();

String[] params =null;

if(completelyNB){

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};

}else{

params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};

}

ToolRunner.run(tnbj, params);

}

} catch (Exception e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("生成訓練模型失敗!");

System.exit(3);

}

}

}

package myTesting.bayes;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import org.apache.commons.lang.StringUtils;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.PathFilter;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.mahout.classifier.naivebayes.BayesUtils;

import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;

import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;

import org.apache.mahout.common.Pair;

import org.apache.mahout.common.iterator.sequencefile.PathType;

import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;

import org.apache.mahout.math.RandomAccessSparseVector;

import org.apache.mahout.math.Vector;

import org.apache.mahout.math.Vector.Element;

import org.apache.mahout.vectorizer.TFIDF;

import com.google.common.collect.ConcurrentHashMultiset;

import com.google.common.collect.Multiset;

public class BayesCheckData {

private static StandardNaiveBayesClassifier classifier;

private static Map<String, Integer> dictionary;

private static Map<Integer, Long> documentFrequency;

private static Map<Integer, String> labelIndex;

public void init(Configuration conf){

try {

String modelPath = "/zhoujianfeng/playtennis/model";

String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";

String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";

String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";

dictionary = readDictionnary(conf, new Path(dictionaryPath));

documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));

labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));

NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);

classifier = new StandardNaiveBayesClassifier(model);

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

System.out.println("檢測數據構造成vectors初始化時報錯。。。。");

System.exit(4);

}

}

/**

* 加載字典文件,Key: TermValue; Value:TermID

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {

Map<String, Integer> dictionnary = new HashMap<String, Integer>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

String name = path.getName();

return name.startsWith("dictionary.file");

}

};

for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {

dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());

}

return dictionnary;

}

/**

* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq

* @param conf

* @param dictionnaryDir

* @return

*/

private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {

Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();

PathFilter filter = new PathFilter() {

@Override

public boolean accept(Path path) {

return path.getName().startsWith("part-r");

}

};

for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {

documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());

}

return documentFrequency;

}

public static String getCheckResult(){

Configuration conf = new Configuration();

conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));

String classify = "NaN";

BayesCheckData cdv = new BayesCheckData();

cdv.init(conf);

System.out.println("init done...............");

Vector vector = new RandomAccessSparseVector(10000);

TFIDF tfidf = new TFIDF();

//sunny,hot,high,weak

Multiset<String> words = ConcurrentHashMultiset.create();

words.add("sunny",1);

words.add("hot",1);

words.add("high",1);

words.add("weak",1);

int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數

for (Multiset.Entry<String> entry : words.entrySet()) {

String word = entry.getElement();

int count = entry.getCount();

Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,

if (StringUtils.isEmpty(wordId.toString())){

continue;

}

if (documentFrequency.get(wordId) == null){

continue;

}

Long freq = documentFrequency.get(wordId);

double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);

vector.setQuick(wordId, tfIdfValue);

}

// 利用貝葉斯算法開始分類,并提取得分最好的分類label

Vector resultVector = classifier.classifyFull(vector);

double bestScore = -Double.MAX_VALUE;

int bestCategoryId = -1;

for(Element element: resultVector.all()) {

int categoryId = element.index();

double score = element.get();

System.out.println("categoryId:"+categoryId+" score:"+score);

if (score > bestScore) {

bestScore = score;

bestCategoryId = categoryId;

}

}

classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";

return classify;

}

public static void printResult(){

System.out.println("檢測所屬類別是:"+getCheckResult());

}

}

四、webgis面試題?

1. 請介紹一下WebGIS的概念和作用,以及在實際應用中的優(yōu)勢和挑戰(zhàn)。

WebGIS是一種基于Web技術的地理信息系統,通過將地理數據和功能以可視化的方式呈現在Web瀏覽器中,實現地理空間數據的共享和分析。它可以用于地圖瀏覽、空間查詢、地理分析等多種應用場景。WebGIS的優(yōu)勢包括易于訪問、跨平臺、實時更新、可定制性強等,但也面臨著數據安全性、性能優(yōu)化、用戶體驗等挑戰(zhàn)。

2. 請談談您在WebGIS開發(fā)方面的經驗和技能。

我在WebGIS開發(fā)方面有豐富的經驗和技能。我熟悉常用的WebGIS開發(fā)框架和工具,如ArcGIS API for JavaScript、Leaflet、OpenLayers等。我能夠使用HTML、CSS和JavaScript等前端技術進行地圖展示和交互設計,并能夠使用后端技術如Python、Java等進行地理數據處理和分析。我還具備數據庫管理和地理空間數據建模的能力,能夠設計和優(yōu)化WebGIS系統的架構。

3. 請描述一下您在以往項目中使用WebGIS解決的具體問題和取得的成果。

在以往的項目中,我使用WebGIS解決了許多具體問題并取得了顯著的成果。例如,在一次城市規(guī)劃項目中,我開發(fā)了一個基于WebGIS的交通流量分析系統,幫助規(guī)劃師們評估不同交通方案的效果。另外,在一次環(huán)境監(jiān)測項目中,我使用WebGIS技術實現了實時的空氣質量監(jiān)測和預警系統,提供了準確的空氣質量數據和可視化的分析結果,幫助政府和公眾做出相應的決策。

4. 請談談您對WebGIS未來發(fā)展的看法和期望。

我認為WebGIS在未來會繼續(xù)發(fā)展壯大。隨著云計算、大數據和人工智能等技術的不斷進步,WebGIS將能夠處理更大規(guī)模的地理數據、提供更豐富的地理分析功能,并與其他領域的技術進行深度融合。我期望未來的WebGIS能夠更加智能化、個性化,為用戶提供更好的地理信息服務,助力各行各業(yè)的決策和發(fā)展。

五、freertos面試題?

這塊您需要了解下stm32等單片機的基本編程和簡單的硬件設計,最好能夠了解模電和數電相關的知識更好,還有能夠會做操作系統,簡單的有ucos,freeRTOS等等。最好能夠使用PCB畫圖軟件以及keil4等軟件。希望對您能夠有用。

六、大學有不用美術專業(yè)分的美術專業(yè)

大學里,有不用美術專業(yè)分的美術專業(yè),這是一種特殊的存在。它既是對傳統學科的拓展,也是對藝術教育的再思考。今天,我們來聊聊這個神秘的專業(yè),以及它在大學教育中的意義。

什么是不用美術專業(yè)分的美術專業(yè)?

不用美術專業(yè)分的美術專業(yè),簡稱“不分專業(yè)”的美術專業(yè),是一種允許非美術專業(yè)學生選擇修讀的課程體系。傳統意義上,美術專業(yè)是專屬于美術類學院的學科,學生需要參加嚴格的專業(yè)考試才能被錄取。而不分專業(yè)的美術專業(yè)則取消了這個限制,允許來自不同背景的學生選擇修讀相關課程。

這種專業(yè)的設立,旨在讓更多的學生接觸和了解藝術,促進不同學科之間的交流和融合。它為那些對藝術感興趣,但未能進入專業(yè)美術學院就讀的學生提供了一個平臺。同時,這也是對傳統教育體系的一種突破,給予學生更多選擇的空間。

不分專業(yè)的美術專業(yè)帶來的影響

不分專業(yè)的美術專業(yè)帶來了多重影響。首先,它為不同學科的學生提供了一個共同的學習領域。美術作為一門充滿創(chuàng)造力和想象力的學科,可以為其他學科提供新鮮的思維方式和藝術的觸動。與此同時,學生們也可以通過與其他學科的學生交流,拓寬自己的視野,獲得更多的靈感和啟發(fā)。

其次,不分專業(yè)的美術專業(yè)對于傳統美術專業(yè)的留學生也具有重要意義。留學生們可以選擇修讀一些與自己專業(yè)相關的藝術課程,豐富自己的學習經驗。這對于培養(yǎng)學生的綜合能力和跨學科思維具有積極的促進作用。

大學教育中的意義

大學教育是學生綜合能力培養(yǎng)的重要階段,而不分專業(yè)的美術專業(yè)在其中扮演著重要的角色。它可以激發(fā)學生對藝術的興趣與熱愛,培養(yǎng)學生的創(chuàng)造力和想象力。這對于提高學生的綜合素質,促進學生全面發(fā)展具有積極的意義。

此外,不分專業(yè)的美術專業(yè)還可以為學生提供一個跨學科交流的平臺。藝術是跨學科的,它與文學、歷史、哲學等學科有著密切的聯系。通過與其他學科的學生進行交流,不僅可以為自己的學習添加新的維度,還可以促進不同學科之間的互相啟發(fā)和合作。

如何選擇不分專業(yè)的美術專業(yè)課程?

對于有興趣選擇不分專業(yè)的美術專業(yè)課程的學生來說,有一些注意事項需要考慮。首先,你需要了解自己對藝術的興趣方向是什么,是繪畫、攝影、設計或其他方面。這將有助于你選擇適合自己的課程。

其次,你需要了解該課程的教學內容和教學方式。與專業(yè)美術學院相比,不分專業(yè)的美術專業(yè)課程可能更加注重實踐與創(chuàng)作。你需要確保自己對這種教學方式有一定的適應性,同時也要關注該課程是否與自己的學科專業(yè)相銜接。

最后,你還可以咨詢學院的老師或輔導員,了解更多關于該課程的信息。他們可以為你解答疑惑,提供相關的指導。

結語

不分專業(yè)的美術專業(yè)為大學教育注入了新的活力和創(chuàng)造力。它打破了傳統的學科界限,為學生們提供了更多選擇的機會。與此同時,它也促進了不同學科之間的交流與合作,豐富了大學教育的多樣性。

作為學生,我們應該抓住這個機會,通過選修不分專業(yè)的美術專業(yè)課程,拓寬自己的學習領域,提高自己的綜合素質。藝術是一扇通往美好世界的大門,讓我們一起邁步走進吧!

七、paas面試題?

1.負責區(qū)域大客戶/行業(yè)客戶管理系統銷售拓展工作,并完成銷售流程;

2.維護關鍵客戶關系,與客戶決策者保持良好的溝通;

3.管理并帶領團隊完成完成年度銷售任務。

八、面試題類型?

你好,面試題類型有很多,以下是一些常見的類型:

1. 技術面試題:考察候選人技術能力和經驗。

2. 行為面試題:考察候選人在過去的工作或生活中的行為表現,以預測其未來的表現。

3. 情境面試題:考察候選人在未知情境下的決策能力和解決問題的能力。

4. 案例面試題:考察候選人解決實際問題的能力,模擬真實工作場景。

5. 邏輯推理題:考察候選人的邏輯思維能力和分析能力。

6. 開放性面試題:考察候選人的個性、價值觀以及溝通能力。

7. 挑戰(zhàn)性面試題:考察候選人的應變能力和創(chuàng)造力,通常是一些非常具有挑戰(zhàn)性的問題。

九、cocoscreator面試題?

需要具體分析 因為cocoscreator是一款游戲引擎,面試時的問題會涉及到不同的方面,如開發(fā)經驗、游戲設計、圖形學等等,具體要求也會因公司或崗位而異,所以需要根據實際情況進行具體分析。 如果是針對開發(fā)經驗的問題,可能會考察候選人是否熟悉cocoscreator常用API,是否能夠獨立開發(fā)小型游戲等等;如果是針對游戲設計的問題,則需要考察候選人對游戲玩法、關卡設計等等方面的理解和能力。因此,需要具體分析才能得出準確的回答。

十、mycat面試題?

以下是一些可能出現在MyCat面試中的問題:

1. 什么是MyCat?MyCat是一個開源的分布式數據庫中間件,它可以將多個MySQL數據庫組合成一個邏輯上的數據庫集群,提供高可用性、高性能、易擴展等特性。

2. MyCat的優(yōu)勢是什么?MyCat具有以下優(yōu)勢:支持讀寫分離、支持分庫分表、支持自動切換故障節(jié)點、支持SQL解析和路由、支持數據分片等。

3. MyCat的架構是怎樣的?MyCat的架構包括三個層次:客戶端層、中間件層和數據存儲層??蛻舳藢迂撠熃邮蘸吞幚砜蛻舳苏埱螅虚g件層負責SQL解析和路由,數據存儲層負責實際的數據存儲和查詢。

4. MyCat支持哪些數據庫?MyCat目前支持MySQL和MariaDB數據庫。

5. MyCat如何實現讀寫分離?MyCat通過將讀請求和寫請求分別路由到不同的MySQL節(jié)點上實現讀寫分離。讀請求可以路由到多個只讀節(jié)點上,從而提高查詢性能。

6. MyCat如何實現分庫分表?MyCat通過對SQL進行解析和路由,將數據按照一定規(guī)則劃分到不同的數據庫或表中,從而實現分庫分表。

7. MyCat如何保證數據一致性?MyCat通過在多個MySQL節(jié)點之間同步數據,保證數據的一致性。同時,MyCat還支持自動切換故障節(jié)點,從而保證系統的高可用性。

8. MyCat的部署方式有哪些?MyCat可以部署在單機上,也可以部署在多臺服務器上實現分布式部署。

相關資訊
熱門頻道

Copyright © 2024 招聘街 滇ICP備2024020316號-38