身高體重,胸透,血壓、心率,血檢,眼耳喉鼻,腸胃脾腎等
主要就是胸透與血檢,看你有無傳染疾病,例如肺結核,乙肝等等,其他項目都是一般體檢項目。
這個心理測試題是富士康心理測試專家隨機出的題目,在網(wǎng)上是查不到的。
你只要正常回答、別有什么歪想法、就往正直方面回答就可以正常通過心理測試。其實這一關很簡單。就是為了測試你心理有沒有問題。如果有問題就不能去上班了、鄭州富士康好 昆山已經(jīng)被派遣公司給做爛了,一小時8塊錢利潤給中介,員工能拿到收多少錢? 鄭州這邊好點多事富士康給發(fā)工資,派遣也是富士康發(fā)工資。
員工工資有保證.
在當今教育領域,成為一名教師是許多人的夢想和追求。特崗教師是一個備受關注的職位,而2017年的特崗教師面試題目也備受廣大教育工作者和求職者的關注。面試題目的設置旨在考察應聘者的專業(yè)知識、教學能力、綜合素質等方面,是對求職者綜合能力的一次全面考量。下面將對2017年特崗教師面試題目進行詳細介紹和解析,希望對即將面試的人員有所幫助。
專業(yè)知識類面試題目是特崗教師面試中的重中之重,包括教育學、心理學、教學法等專業(yè)知識內容。在2017年的特崗教師面試中,關于專業(yè)知識的問題涉及到教育改革、素質教育、課程設計等方面,需要應聘者對教育教學的基本原理和理論有所了解和掌握。
教學能力是特崗教師應具備的重要素質之一,也是面試中必定會涉及的內容。在2017年的特崗教師面試中,針對教學能力的問題主要包括課堂管理、教學設計、學生評價等方面,考察應聘者的實際教學能力和實踐經(jīng)驗。
特崗教師的招聘要求不僅包括專業(yè)知識和教學能力,還需要具備一定的綜合素質和能力。在2017年的特崗教師面試中,綜合素質類面試題目主要考察應聘者的綜合素質、溝通能力、團隊合作精神等方面,以確保招聘的特崗教師能夠勝任教育教學工作。
除了準備面試題目外,應聘者還應了解一些面試技巧和注意事項,以提高面試的成功率。建議應聘者在面試前充分準備,熟悉自己的簡歷和求職材料,展現(xiàn)出自信和積極的態(tài)度。同時,在回答問題時要清晰明了,表達準確且簡潔,避免答非所問或唐突回答。
在面試過程中,應聘者要注意言行舉止得體,保持禮貌和謙虛的態(tài)度。與面試官的交流要主動積極,展現(xiàn)自己的特長和優(yōu)勢。最后,面試結束后要及時向面試官表達感謝,并對自己的表現(xiàn)進行總結和反思,為下一次的面試做準備。
總的來說,2017年特崗教師面試題目涉及專業(yè)知識、教學能力、綜合素質等多個方面,是對求職者綜合能力的全面考驗。通過充分的準備和自信的表現(xiàn),相信每一位應聘者都能在面試中展現(xiàn)出自己的實力和魅力,順利躋身于特崗教師的行列。希望以上介紹對您有所幫助,祝您在未來的求職之路上取得成功!
不咋樣,還上夜班,一個宿舍6個人,富士康里人太多了什么樣的人都有,工資還很不穩(wěn)定,最高能3000,平常2000多,勸你還是不要去了
組長 拿同等資位的底薪,加200塊崗位津貼以員一舉例 1900塊底薪+加班費+各項補助+200塊崗位津貼-食宿=工資
在面試準備過程中,了解并掌握常見的面試題是至關重要的。本文將介紹2017年Java面試中涉及到的百度云相關問題,幫助讀者更好地準備面試。
百度云是百度公司推出的云計算服務平臺,為用戶提供云存儲、云計算、云數(shù)據(jù)庫等服務。在云計算領域,百度云擁有豐富的產(chǎn)品線,能夠滿足不同用戶的需求。
Java作為一種主流的編程語言,在百度云的應用也非常廣泛。很多百度云的后端服務都是采用Java語言編寫的,因此熟練掌握Java語言對于在百度云工作的人來說至關重要。
以下是2017年Java面試中可能會涉及到的一些百度云相關題目示例:
在準備面試時,除了熟悉Java語言和百度云的相關知識外,還應該重點關注以下幾個方面:
通過本文的介紹,相信讀者對2017年Java面試題中涉及到的百度云相關內容有了一定的了解。在面試準備過程中,持續(xù)學習和提升自己的能力是非常重要的,希望讀者能夠取得理想的面試成績。
我是富士康的前同事,回答不一定讓你滿意,但是可供參考。
1、富士康有很多個不同的事業(yè)群,不同的事業(yè)群的人資政策是有一些差異的,效益好的時候,資位晉升較快,畢竟資位升了,對應的加薪也要同步;
2、一般資位晉升分為考試晉升和老板提報晉升,上年同級別績效要甲等以上,且需要通過富士康IE學院要求各事業(yè)群舉辦的培訓和考試;
3、關系資位生效,既然人資已經(jīng)接收了你的資料,一般會在三個月內實現(xiàn),會在富士康內網(wǎng)的平臺有所變更。比如IE學院的個人賬號,還有你部門的個人信息網(wǎng)頁。
愛口袋提交后,根據(jù)提示去人資大樓辦理就可以。
之前看了Mahout官方示例 20news 的調用實現(xiàn);于是想根據(jù)示例的流程實現(xiàn)其他例子。網(wǎng)上看到了一個關于天氣適不適合打羽毛球的例子。
訓練數(shù)據(jù):
Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
檢測數(shù)據(jù):
sunny,hot,high,weak
結果:
Yes=》 0.007039
No=》 0.027418
于是使用Java代碼調用Mahout的工具類實現(xiàn)分類。
基本思想:
1. 構造分類數(shù)據(jù)。
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
接下來貼下我的代碼實現(xiàn)=》
1. 構造分類數(shù)據(jù):
在hdfs主要創(chuàng)建一個文件夾路徑 /zhoujainfeng/playtennis/input 并將分類文件夾 no 和 yes 的數(shù)據(jù)傳到hdfs上面。
數(shù)據(jù)文件格式,如D1文件內容: Sunny Hot High Weak
2. 使用Mahout工具類進行訓練,得到訓練模型。
3。將要檢測數(shù)據(jù)轉換成vector數(shù)據(jù)。
4. 分類器對vector數(shù)據(jù)進行分類。
這三步,代碼我就一次全貼出來;主要是兩個類 PlayTennis1 和 BayesCheckData = =》
package myTesting.bayes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.training.TrainNaiveBayesJob;
import org.apache.mahout.text.SequenceFilesFromDirectory;
import org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles;
public class PlayTennis1 {
private static final String WORK_DIR = "hdfs://192.168.9.72:9000/zhoujianfeng/playtennis";
/*
* 測試代碼
*/
public static void main(String[] args) {
//將訓練數(shù)據(jù)轉換成 vector數(shù)據(jù)
makeTrainVector();
//產(chǎn)生訓練模型
makeModel(false);
//測試檢測數(shù)據(jù)
BayesCheckData.printResult();
}
public static void makeCheckVector(){
//將測試數(shù)據(jù)轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"testinput";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失敗!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-test-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-test-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失??!");
System.out.println(2);
}
}
public static void makeTrainVector(){
//將測試數(shù)據(jù)轉換成序列化文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"input";
String output = WORK_DIR+Path.SEPARATOR+"tennis-seq";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SequenceFilesFromDirectory sffd = new SequenceFilesFromDirectory();
String[] params = new String[]{"-i",input,"-o",output,"-ow"};
ToolRunner.run(sffd, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("文件序列化失??!");
System.exit(1);
}
//將序列化文件轉換成向量文件
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-seq";
String output = WORK_DIR+Path.SEPARATOR+"tennis-vectors";
Path in = new Path(input);
Path out = new Path(output);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
SparseVectorsFromSequenceFiles svfsf = new SparseVectorsFromSequenceFiles();
String[] params = new String[]{"-i",input,"-o",output,"-lnorm","-nv","-wt","tfidf"};
ToolRunner.run(svfsf, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("序列化文件轉換成向量失??!");
System.out.println(2);
}
}
public static void makeModel(boolean completelyNB){
try {
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String input = WORK_DIR+Path.SEPARATOR+"tennis-vectors"+Path.SEPARATOR+"tfidf-vectors";
String model = WORK_DIR+Path.SEPARATOR+"model";
String labelindex = WORK_DIR+Path.SEPARATOR+"labelindex";
Path in = new Path(input);
Path out = new Path(model);
Path label = new Path(labelindex);
FileSystem fs = FileSystem.get(conf);
if(fs.exists(in)){
if(fs.exists(out)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(out, true);
}
if(fs.exists(label)){
//boolean參數(shù)是,是否遞歸刪除的意思
fs.delete(label, true);
}
TrainNaiveBayesJob tnbj = new TrainNaiveBayesJob();
String[] params =null;
if(completelyNB){
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow","-c"};
}else{
params = new String[]{"-i",input,"-el","-o",model,"-li",labelindex,"-ow"};
}
ToolRunner.run(tnbj, params);
}
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("生成訓練模型失??!");
System.exit(3);
}
}
}
package myTesting.bayes;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.PathFilter;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.common.Pair;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterable;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.Vector.Element;
import org.apache.mahout.vectorizer.TFIDF;
import com.google.common.collect.ConcurrentHashMultiset;
import com.google.common.collect.Multiset;
public class BayesCheckData {
private static StandardNaiveBayesClassifier classifier;
private static Map<String, Integer> dictionary;
private static Map<Integer, Long> documentFrequency;
private static Map<Integer, String> labelIndex;
public void init(Configuration conf){
try {
String modelPath = "/zhoujianfeng/playtennis/model";
String dictionaryPath = "/zhoujianfeng/playtennis/tennis-vectors/dictionary.file-0";
String documentFrequencyPath = "/zhoujianfeng/playtennis/tennis-vectors/df-count";
String labelIndexPath = "/zhoujianfeng/playtennis/labelindex";
dictionary = readDictionnary(conf, new Path(dictionaryPath));
documentFrequency = readDocumentFrequency(conf, new Path(documentFrequencyPath));
labelIndex = BayesUtils.readLabelIndex(conf, new Path(labelIndexPath));
NaiveBayesModel model = NaiveBayesModel.materialize(new Path(modelPath), conf);
classifier = new StandardNaiveBayesClassifier(model);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
System.out.println("檢測數(shù)據(jù)構造成vectors初始化時報錯。。。。");
System.exit(4);
}
}
/**
* 加載字典文件,Key: TermValue; Value:TermID
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<String, Integer> readDictionnary(Configuration conf, Path dictionnaryDir) {
Map<String, Integer> dictionnary = new HashMap<String, Integer>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
String name = path.getName();
return name.startsWith("dictionary.file");
}
};
for (Pair<Text, IntWritable> pair : new SequenceFileDirIterable<Text, IntWritable>(dictionnaryDir, PathType.LIST, filter, conf)) {
dictionnary.put(pair.getFirst().toString(), pair.getSecond().get());
}
return dictionnary;
}
/**
* 加載df-count目錄下TermDoc頻率文件,Key: TermID; Value:DocFreq
* @param conf
* @param dictionnaryDir
* @return
*/
private static Map<Integer, Long> readDocumentFrequency(Configuration conf, Path documentFrequencyDir) {
Map<Integer, Long> documentFrequency = new HashMap<Integer, Long>();
PathFilter filter = new PathFilter() {
@Override
public boolean accept(Path path) {
return path.getName().startsWith("part-r");
}
};
for (Pair<IntWritable, LongWritable> pair : new SequenceFileDirIterable<IntWritable, LongWritable>(documentFrequencyDir, PathType.LIST, filter, conf)) {
documentFrequency.put(pair.getFirst().get(), pair.getSecond().get());
}
return documentFrequency;
}
public static String getCheckResult(){
Configuration conf = new Configuration();
conf.addResource(new Path("/usr/local/hadoop/conf/core-site.xml"));
String classify = "NaN";
BayesCheckData cdv = new BayesCheckData();
cdv.init(conf);
System.out.println("init done...............");
Vector vector = new RandomAccessSparseVector(10000);
TFIDF tfidf = new TFIDF();
//sunny,hot,high,weak
Multiset<String> words = ConcurrentHashMultiset.create();
words.add("sunny",1);
words.add("hot",1);
words.add("high",1);
words.add("weak",1);
int documentCount = documentFrequency.get(-1).intValue(); // key=-1時表示總文檔數(shù)
for (Multiset.Entry<String> entry : words.entrySet()) {
String word = entry.getElement();
int count = entry.getCount();
Integer wordId = dictionary.get(word); // 需要從dictionary.file-0文件(tf-vector)下得到wordID,
if (StringUtils.isEmpty(wordId.toString())){
continue;
}
if (documentFrequency.get(wordId) == null){
continue;
}
Long freq = documentFrequency.get(wordId);
double tfIdfValue = tfidf.calculate(count, freq.intValue(), 1, documentCount);
vector.setQuick(wordId, tfIdfValue);
}
// 利用貝葉斯算法開始分類,并提取得分最好的分類label
Vector resultVector = classifier.classifyFull(vector);
double bestScore = -Double.MAX_VALUE;
int bestCategoryId = -1;
for(Element element: resultVector.all()) {
int categoryId = element.index();
double score = element.get();
System.out.println("categoryId:"+categoryId+" score:"+score);
if (score > bestScore) {
bestScore = score;
bestCategoryId = categoryId;
}
}
classify = labelIndex.get(bestCategoryId)+"(categoryId="+bestCategoryId+")";
return classify;
}
public static void printResult(){
System.out.println("檢測所屬類別是:"+getCheckResult());
}
}